

TRANSLATION OF BIPOLAR VALUED FUZZY SUBHEMIRING OF A HEMIRING

N. Kumaran¹, K. Arjunan² & B. Ananth³

¹Associate Professor, Department of Mathematics, GRT Institute of Engineering and Technology, Thiruvallur, Tamil Nadu, India

²Research Scholar, Department of Mathematics, Alagappa Government Arts College, Karaikudi, Tamil Nadu, India ³Department of Mathematics, H. H. The Rajah's College, Pudukkottai, Tamil Nadu, India

Received: 05 Jun 2018Accepted: 06 Jul 2018Published: 16 Jul 2018

ABSTRACT

In this paper, some definitions and new Theorems of a bipolar valued fuzzy subhemiring of a hemiring are presented. Using the definition of translation of bipolar valued fuzzy subhemiring of a hemiring, union, intersection and translation Theorems are introduced.

KEYWORDS: Bipolar Valued Fuzzy Subset, Image, Preimage, Bipolar Valued Fuzzy Subhemiring, Translation

INTRODUCTION

The concept of fuzzy sets was introduced by Zadeh [15]. Since its inception, the theory of fuzzy sets has developed in many directions and is finding applications in a wide variety of fields. In [5] Rosenfeld used this concept to develop the theory of fuzzy groups of a group. In fact, many basic properties in group theory are found to be carried over to fuzzy groups. Lee [9] introduced the notion of bipolar valued fuzzy sets. Bipolar valued fuzzy sets are an extension of fuzzy sets whose membership degree range is enlarged from the interval [0, 1] to [-1, 1]. In a bipolar valued fuzzy set, the membership degree 0 means that elements are irrelevant to the corresponding property, the membership degree (0, 1] indicates that elements somewhat satisfy the property and the membership degree [-1, 0) indicates that elements somewhat satisfy the property. Anitha.M.S., Muruganantha Prasad & K. Arjunan[1] defined as bipolar valued fuzzy subgroups of a group. In this paper, we introduce the concept of bipolar valued fuzzy translation of bipolar valued fuzzy subhemirings of a hemiring. Using these concepts, some results are established.

1. PRELIMINARIES

1.1. Definition

A bipolar valued fuzzy set (BVFS) of X is defined as an object of the form $A = \{ \langle x, A^+(x), A^-(x) \rangle | x \in X \}$, where $A^+ : X \rightarrow [0, 1]$ and $A^- : X \rightarrow [-1, 0]$. The positive membership degree $A^+(x)$ denotes the satisfaction degree of an element x to the property corresponding to a bipolar valued fuzzy set A and the negative membership degree $A^-(x)$ denotes the satisfaction degree of an element x to some implicit counter-property corresponding to a bipolar valued fuzzy set A.

1.2. Example

A = { < x, 0.8, -0.6 >, < y, 0.7, -0.5 >, < z, 0.9, -0.4 >} is a bipolar valued fuzzy subset of X = {x, y, z}.

1.3. Definition

Let S be a hemiring. A bipolar valued fuzzy subset B of S is said to be a bipolar valued fuzzy subhemiring of S (BVFSHR) if the following conditions are satisfied,

- $B^+(x+y) \ge \min\{B^+(x), B^+(y)\}$
- $B^+(xy) \ge \min\{B^+(x), B^+(y)\}$
- $B^{-}(x+y) \le \max\{B^{-}(x), B^{-}(y)\}$
- $B^{-}(xy) \le \max\{B^{-}(x), B^{-}(y)\}$ for all x and y in S.

1.4. Example:

Let $S = Z_3 = \{0, 1, 2\}$ be a hemiring with respect to the ordinary addition and multiplication. Then $A = \{<0, 0.8, -0.9 >, <1, 0.6, -0.8 >, <2, 0.6, -0.8 > \}$ is a bipolar valued fuzzy subhemiring of S.

1.5. Definition

Let X and Y be any two sets. Let $f: X \to Y$ be any function and let A be a bipolar valued fuzzy subset in X, V be a bipolar valued fuzzy subset in f(X) = Y, defined by $V^+(y) = \sup_{x \in f^{-1}(y)} A^+(x)$ and $V^-(y) = \inf_{x \in f^{-1}(y)} A^-(x)$, for all x in X and y in

Y. A is called a preimage of V under f and is defined as $A^+(x) = V^+(f(x))$, $A^-(x) = V^-(f(x))$ for all x in X and is denoted by $f^{-1}(V)$.

1.6. Definition

Let $A = \langle A^+, A^- \rangle$ be a bipolar valued fuzzy subset of X and α in $[0, 1 - \sup \{ A^+(x) \}]$, β in $[-1 - \inf \{ A^-(x) \}, 0]$. Then $T = \langle T^+, T^- \rangle$ is called a bipolar valued fuzzy translation of A if $T^+(x) = T^{+A} \alpha_i(x) = A^+(x) + \alpha$, $T^-(x) = T^{-A}_{\beta}(x) = A^-(x) + \beta$, for all x in X.

1.7 Example

Consider the set X = { 0, 1, 2, 3, 4 }. Let A = { (0, 0.5, -0.1), (1, 0.4, -0.3), (2, 0.6, -0.05), (3, 0.45, -0.2), (4, 0.2, -0.5) } be a bipolar valued fuzzy subset of X and $\alpha = 0.1$, $\beta = -0.1$. Then the bipolar valued fuzzy translation of A is T = $T^{A}_{(0.1, -0.1)} = \{ (0, 0.6, -0.2), (1, 0.5, -0.4), (2, 0.7, -0.15), (3, 0.55, -0.3), (4, 0.3, -0.6) \}.$

2. PROPERTIES

2.1. Theorem

If M and N are two bipolar valued fuzzy translations of bipolar valued fuzzy subhemiring A of a hemiring R, then their intersection $M \cap N$ is also a bipolar valued fuzzy translation of A.

28

Proof: Let x and y belong to R. Let $M = T^{A}_{(\alpha,\beta)} = \{ \langle x, A^{+}(x) + \alpha, A^{-}(x) + \beta \rangle / x \in R \}$ and $N = T^{A}_{(\gamma,\delta)} = \{ \langle x, A^{+}(x) + \gamma, A^{-}(x) + \delta \rangle / x \in R \}$ be two bipolar valued fuzzy translations of bipolar valued fuzzy subhemiring $A = \langle A^{+}, A^{-} \rangle$ of R. Let $C = M \cap N$ and $C = \{ \langle x, C^{+}(x), C^{-}(x) \rangle / x \in R \}$, where $C^{+}(x) = \min \{ A^{+}(x) + \alpha, A^{+}(x) + \gamma \}$ and $C^{-}(x) = \max \{ A^{-}(x) + \beta, A^{-}(x) + \delta \}$.

Case (i): $\alpha \leq \gamma$ and $\beta \leq \delta$. Now C⁺(x) = min{M⁺(x), N⁺(x)} = min{A⁺(x)+ α , A⁺(x)+ γ }= A⁺(x)+ α = M⁺(x) for all x in R. And C⁻(x) = max { M⁻(x), N⁻(x) } = max { A⁻(x) + β , A⁻(x) + δ }= A⁻(x) + δ = N⁻(x) for all x in R. Therefore C = $T^{A}_{(\alpha,\delta)} = \{ \langle x, A^{+}(x) + \alpha, A^{-}(x) + \delta \rangle / x \in \mathbb{R} \}$ is a bipolar valued fuzzy translation of bipolar valued fuzzy subhemiring A of R.

Case (ii): $\alpha \ge \gamma$ and $\beta \ge \delta$. Now C⁺(x) = min { M⁺(x), N⁺(x) } = min { A⁺(x) + α , A⁺(x)+ γ } = A⁺(x) + $\gamma = N^+(x)$ for all x in R. And C⁻(x) = max { M⁻(x), N⁻(x) } = max { A⁻(x) + β , A⁻(x) + δ } = A⁻(x) + $\beta = M^-(x)$ for all x in R. Therefore C = $T^A_{(\gamma,\beta)}$ = { $\langle x, A^+(x) + \gamma, A^-(x) + \beta \rangle / x \in \mathbb{R}$ } is a bipolar valued fuzzy translation of bipolar valued fuzzy subhemiring A of R.

Case (iii): $\alpha \leq \gamma$ and $\beta \geq \delta$. Clearly $C = T^A_{(\alpha,\beta)} = \{ \langle x, A^+(x) + \alpha, A^-(x) + \beta \rangle / x \in R \}$ is a bipolar valued fuzzy subhemiring A of R.

Case (iv): $\alpha \ge \gamma$ and $\beta \le \delta$. Clearly $C = T^A_{(\gamma,\delta)} = \{ \langle x, A^+(x) + \gamma, A^-(x) + \delta \rangle / x \in R \}$ is a bipolar valued fuzzy translation of bipolar valued fuzzy subhemiring A of R. In other cases are true, so in all the cases, the intersection of any two bipolar valued fuzzy translations of bipolar valued fuzzy subhemiring A of R is a bipolar valued fuzzy translation of A.

2.2. Theorem

The intersection of a family of bipolar valued fuzzy translations of bipolar valued fuzzy subhemiring A of a hemiring R is a bipolar valued fuzzy translation of A.

Proof: Using the Theorem 2.1, we can prove easily.

2.3. Theorem

Union of any two bipolar valued fuzzy translations of bipolar valued fuzzy subhemiring A of a hemiring R is a bipolar valued fuzzy translation of A.

Proof: Let x and y belong to R. Let $M = T^{A}_{(\alpha,\beta)} = \{ \langle x, A^{+}(x) + \alpha, A^{-}(x) + \beta \rangle / x \in R \}$ and $N = T^{A}_{(\gamma,\delta)} = \{ \langle x, A^{+}(x) + \gamma, A^{-}(x) + \delta \rangle / x \in R \}$ be two bipolar valued fuzzy translations of bipolar valued fuzzy subhemiring $A = \langle A^{+}, A^{-} \rangle$ of R. Let $C = M \cup N$ and $C = \{ \langle x, C^{+}(x), C^{-}(x) \rangle / x \in R \}$, where $C^{+}(x) = \max \{ A^{+}(x) + \alpha, A^{+}(x) + \gamma \}$ and $C^{-}(x) = M$ in $\{ A^{-}(x) + \beta \}$.

Case (i): $\alpha \le \gamma$ and $\beta \le \delta$. Now $C^+(x) = \max \{ M^+(x), N^+(x) \} = \max \{ A^+(x) + \alpha, A^+(x) + \gamma \} = A^+(x) + \gamma = N^+(x)$ for all x and y in R. And $C^-(x) = Min \{ M^-(x), N^-(x) \} = Min \{ A^-(x) + \beta, A^-(x) + \delta \} = A^-(x) + \beta = M^-(x)$ for all x in R.

Therefore $C = T^A_{(\gamma,\beta)} = \{ \langle x, A^+(x) + \gamma, A^-(x) + \beta \rangle / x \in \mathbb{R} \}$ is a bipolar valued fuzzy translation of bipolar valued fuzzy subhemiring A of R.

Case (ii): $\alpha \ge \gamma$ and $\beta \ge \delta$. Now C⁺(x) = max { M⁺(x), N⁺(x) } = max { A⁺(x) + α , A⁺(x)+ γ } = A⁺(x) + $\alpha = M^+(x)$ for all x in R. And C⁻(x) = min{ M⁻(x), N⁻(x) } = min{ A⁻(x)+ β , A⁻(x)+ δ } = A⁻(x)+ $\delta = N^-(x)$ for all x in R. Therefore C = $T^A_{(\alpha,\delta)}$ = { $\langle x, A^+(x) + \alpha, A^-(x) + \delta \rangle / x \in \mathbb{R}$ } is a bipolar valued fuzzy translation of bipolar valued fuzzy subhemiring A of R.

Case (iii): $\alpha \leq \gamma$ and $\beta \geq \delta$. Clearly $C = T^A_{(\gamma,\delta)} = \{ \langle x, A^+(x) + \gamma, A^-(x) + \delta \rangle / x \in R \}$ is a bipolar valued fuzzy subhemiring A of R.

Case (iv): $\alpha \ge \gamma$ and $\beta \le \delta$. Clearly $C = T^A_{(\alpha,\beta)} = \{ \langle x, A^+(x) + \alpha, A^-(x) + \beta \rangle / x \in R \}$ is a bipolar valued fuzzy translation of bipolar valued fuzzy subhemiring A of R. In other cases are true, so in all the cases, union of any two bipolar valued fuzzy translations of bipolar valued fuzzy subhemiring A of R is a bipolar valued fuzzy translation of A.

2.4. Theorem

The union of a family of bipolar valued fuzzy translations of bipolar valued fuzzy subhemiring A of a hemiring R is a bipolar valued fuzzy translation of A.

Proof: Using the Theorem 2.1, we can prove easily.

2.5. Theorem

A bipolar valued fuzzy translation of a bipolar valued fuzzy subhemiring A of a hemiring R is a bipolar valued fuzzy subhemiring of R.

Proof: Assume that $T = \langle T^+, T^- \rangle$ is a bipolar valued fuzzy translation of a bipolar valued fuzzy subhemiring $A = \langle A^+, A^- \rangle$ of a hemiring R. Let x and y in R. We have $T^+(x+y) = A^+(x+y) + \alpha \ge \min\{A^+(x), A^+(y)\} + \alpha = \min\{A^+(x) + \alpha, A^+(y) + \alpha\} = \min\{T^+(x), T^+(y)\}$. Therefore $T^+(x+y) \ge \min\{T^+(x), T^+(y)\}$ for all x and y in R. And $T^+(xy) = A^+(xy) + \alpha \ge \min\{A^+(x), A^+(y)\} + \alpha = \min\{A^+(x) + \alpha, A^+(y) + \alpha\} = \min\{T^+(x), T^+(y)\}$. Therefore $T^+(xy) \ge \min\{T^+(x), T^+(y)\}$ for all x and y in R. Also $T^-(x+y) = A^-(x+y) + \beta \le \max\{A^-(x), A^-(y)\} + \beta = \max\{A^-(x) + \beta, A^-(y) + \beta\} = \max\{T^-(x), T^-(y)\}$ for all x and y in R. And $T^-(xy) = A^-(xy) + \beta \le \max\{T^-(x), A^-(y)\} + \beta = \max\{A^-(x), A^-(y)\} + \beta \le \max\{A^-(x) + \beta, A^-(y) + \beta\} = \max\{T^-(x), T^-(y)\}$ for all x and y in R. And $T^-(xy) = A^-(xy) + \beta \le \max\{A^-(x), A^-(y)\} + \beta = \max\{A^-(x) + \beta, A^-(y) + \beta\} = \max\{T^-(x), T^-(y)\}$. Therefore $T^-(x) + \beta, A^-(y) + \beta \ge \max\{T^-(x), T^-(y)\}$. Therefore $T^-(x) + \beta, A^-(y) + \beta \ge \max\{T^-(x), T^-(y)\}$. Therefore $T^-(x) + \beta, A^-(y) + \beta \ge \max\{T^-(x), T^-(y)\}$. Therefore $T^-(x) + \beta, A^-(y) + \beta \ge \max\{T^-(x), T^-(y)\}$. Therefore $T^-(x) + \beta, A^-(y) + \beta \ge \max\{T^-(x), T^-(y)\}$. Therefore $T^-(x) + \beta, A^-(y) + \beta \ge \max\{T^-(x), T^-(y)\}$.

2.6. Theorem

Let (R, +, .) and $(R^{l}, +, .)$ be any two hemirings and f be a homomorphism. Then the homomorphic image of a bipolar valued fuzzy translation of a bipolar valued fuzzy subhemiring A of R is also a bipolar valued fuzzy subhemiring of R^{l} .

Proof: Let $V = (V^+, V^-) = f(T^A_{(\alpha,\beta)})$, where $T^A_{(\alpha,\beta)}$ is a bipolar valued fuzzy translation of a bipolar valued fuzzy subhemiring $A = (A^+, A^-)$ of R. We have to prove that V is a bipolar valued fuzzy subhemiring of R¹. For all f(x) and f(y) in R¹, we have $V^+[f(x)+f(y)] = V^+[f(x+y)] \ge T^{+A}{}_{\alpha}(x+y) = A^+(x+y) + \alpha \ge \min\{A^+(x), A^+(y)\} + \alpha = \min\{A^+(x)+\alpha, A^+(y)+\alpha\} = \min\{T^{+A}{}_{\alpha}(x), T^{+A}{}_{\alpha}(y)\}$

which implies that $V^{+}[f(x)+f(y)] \ge \min \{ V^{+}(f(x)), V^{+}(f(y)) \}$ for all f(x) and f(y) in $\mathbb{R}^{!}$. And $V^{+}[f(x)f(y)] = V^{+}[f(xy)] \ge T^{+A}{}_{\alpha}(xy) = \mathbb{A}^{+}(xy) + \alpha \ge \min \{ \mathbb{A}^{+}(x), \mathbb{A}^{+}(y) \} + \alpha = \min \{ \mathbb{A}^{+}(x) + \alpha, \mathbb{A}^{+}(y) + \alpha \ge \min \{ T^{+A}{}_{\alpha}(x), T^{+A}{}_{\alpha}(y) \}$

which implies that $V^+[f(x)f(y)] \ge \min \{ V^+(f(x)), V^+(f(y)) \}$ for all f(x) and f(y) in \mathbb{R}^1 . Also $V^-[f(x)+f(y)] = V^-[f(x+y)] \le T_{\beta}^{-A}(x+y) = A^-(x+y) + \beta \le \max \{ A^-(x), A^-(y) \} + \beta = \max \{ A^-(x) + \beta, A^-(y) + \beta \} = \max \{ T_{\beta}^{-A}(x), T_{\beta}^{-A}(y) \}$

which implies that $V^{-}[f(x)+f(y)] \le \max \{ V^{-}(f(x)), V^{-}(f(y)) \}$ for all f(x) and f(y) in $\mathbb{R}^{!}$. And $V^{-}[f(x)f(y)] = V^{-}[f(xy)] \le T_{\beta}^{-A}(xy) = A^{-}(xy) + \beta \le \max \{A^{-}(x), A^{-}(y)\} + \beta = \max \{A^{-}(x)+\beta, A^{-}(y)+\beta\} = \max \{T_{\beta}^{-A}(x), T_{\beta}^{-A}(y)\}$ which implies that $V^{-}[f(x)f(y)] \le \max \{V^{-}(f(x)), V^{-}(f(y))\}$ for all f(x) and f(y) in $\mathbb{R}^{!}$. Therefore V is a bipolar valued fuzzy subhemiring of $\mathbb{R}^{!}$.

2.7. Theorem

Let (R, +, .) and $(R^{l}, +, .)$ be any two hemirings and f be a homomorphism. Then the homomorphic pre-image of bipolar valued fuzzy translation of a bipolar valued fuzzy subhemiring V of R^{l} is a bipolar valued fuzzy subhemiring of R.

Proof: Let $T = T_{(\alpha,\beta)}^{V} = f(A)$, where $T_{(\alpha,\beta)}^{V}$ is a bipolar valued fuzzy translation of bipolar valued fuzzy subhemiring $V = (V^+, V^-)$ of \mathbb{R}^1 . We have to prove that $A = (A^+, A^-)$ is a bipolar valued fuzzy subhemiring of \mathbb{R} . Let x and y in \mathbb{R} . Then $A^+(x+y) = T_{\alpha}^{+V}$ ($f(x+y) = T_{\alpha}^{+V}$ ($f(x)+f(y) = V^+[f(x)+f(y)] + \alpha \ge \min \{V^+(f(x)), V^+(f(y))\} + \alpha = \min \{V^+(f(x)) + \alpha, V^+(f(y)) + \alpha\} = \min \{T_{\alpha}^{+V}(f(x)), T_{\alpha}^{+V}(f(y))\} = \min \{A^+(x), A^+(y)\}$ which implies that $A^+(x+y) \ge \min\{A^+(x), A^+(y)\}$ for all x, y in \mathbb{R} . And $A^+(xy) = T_{\alpha}^{+V}(f(x)) = T_{\alpha}^{+V}(f(x))$, $T_{\alpha}^{+V}(f(y)) = V^+[f(x)f(y)] + \alpha \ge \min \{V^+(f(x)), V^+(f(x)), V^+(f(y))\} + \alpha = \min \{V^+(f(x)) + \alpha, V^+(f(y)) + \alpha\} = \min \{T_{\alpha}^{+V}(f(x)), T_{\alpha}^{+V}(f(y))\} = \min \{A^+(x), A^+(y)\}$ which implies that $A^+(xy) \ge \min \{A^+(x), A^+(y)\}$ for all x and y in \mathbb{R} . Also $A^-(x+y) = T_{\beta}^{-V}(f(x+y)) = T_{\beta}^{-V}(f(x)+f(y)) = V^-[f(x)+f(y)] + \beta \le \max \{V^-(f(x)), V^-(f(y)) + \beta\} = \max \{T_{\beta}^{-V}(f(x)), T_{\beta}^{-V}(f(x))\} = \max \{A^-(x), A^-(y)\}$ which implies $A^-(x) + \beta = \max \{V^-(f(x)), V^-(f(y))\} + \beta = \max \{T_{\beta}^{-V}(f(y)) + \beta\} = \max \{T_{\beta}^{-V}(f(x)), T_{\beta}^{-V}(f(x))\} = T_{\beta}^{-V}(f(x))$ for all x and y in \mathbb{R} . And $A^-(xy) = T_{\beta}^{-V}(f(x)) = T_{\beta}^{-V}(f(x))$.

2.8. Theorem

Let (R, +, .) and $(R^{I}, +, .)$ be any two hemirings and f be a anti-homomorphism. Then the anti-homomorphic image of a bipolar valued fuzzy translation of a bipolar valued fuzzy subhemiring A of R is also a bipolar valued fuzzy subhemiring of R^{I} .

Proof: Let $V = (V^+, V^-) = f(T^A_{(\alpha,\beta)})$, where $T^A_{(\alpha,\beta)}$ is a bipolar valued fuzzy translation of a bipolar valued fuzzy subhemiring $A = (A^+, A^-)$ of R. We have to prove that V is a bipolar valued fuzzy subhemiring of R^1 . For all f(x) and f(y) in R^1 , we have $V^+[f(x)+f(y)] = V^+[f(y+x)] \ge T^{+A}{}_{\alpha}(y+x) = A^+(y+x) + \alpha \ge \min\{A^+(y), A^+(x)\} + \alpha = \min\{A^+(x)+\alpha, A^+(y)+\alpha\} = \min\{T^{+A}{}_{\alpha}(x), T^{+A}{}_{\alpha}(y)\}$ which implies that $V^+[f(x)+f(y)] \ge \min\{V^+(f(x)), V^+(f(y))\}$ for all f(x) and f(y) in R^1 . And $V^+[f(x)f(y)] = V^+[f(yx)] \ge T^{+A}{}_{\alpha}(yx) = A^+(yx) + \alpha \ge \min\{A^+(y), A^+(x)\} + \alpha = \min\{A^+(x)+\alpha, A^+(y)+\alpha\} = \min\{T^{+A}{}_{\alpha}(x), T^{+A}{}_{\alpha}(y)\}$ which implies that $V^+[f(x)f(y)] \ge \min\{A^+(y), A^+(x)\} + \alpha = \min\{A^+(x)+\alpha, A^+(y)+\alpha\} = \min\{T^{+A}{}_{\alpha}(x), T^{+A}{}_{\alpha}(y)\}$ which implies that $V^+[f(x)f(y)] \ge \min\{V^+(f(x)), V^+(f(y))\}$ for all f(x) and f(y) in R^1 . Also $V^-[f(x)+f(y)] = V^-[f(y+x)] \le T^{-A}{}_{\beta}(y+x) = A^-(y+x) + \beta \le \max\{A^-(y), A^-(x)\} + \beta = \max\{A^-(x)+\beta, A^-(y)+\beta\} = \max\{T^{-A}{}_{\beta}(x), T^{-A}{}_{\beta}(y)\}$ which implies that $V^-[f(x)+f(y)] \le \max\{A^-(x), A^-(y)\} + \beta = \max\{A^-(x)+\beta, A^-(y)+\beta\} = \max\{T^{-A}{}_{\beta}(x), T^{-A}{}_{\beta}(y)\}$ which implies that $V^-[f(x)+f(y)] \le \max\{A^-(x), A^-(y)\} + \beta = \max\{A^-(x)+\beta, A^-(y)+\beta\} = \max\{T^{-A}{}_{\beta}(x), T^{-A}{}_{\beta}(y)\}$ which implies that $V^-[f(x)+\beta] \le \max\{A^-(x), A^-(y)\} + \beta = \max\{A^-(x)+\beta, A^-(y)+\beta\} = \max\{T^{-A}{}_{\beta}(x), T^{-A}{}_{\beta}(y)\}$ which implies that $V^-[f(x)+\beta] \le \max\{A^-(x), A^-(y)\} + \beta = \max\{A^-(x)+\beta, A^-(y)+\beta\} = \max\{T^{-A}{}_{\beta}(x), T^{-A}{}_{\beta}(y)\}$ which implies that $V^-[f(x)+\beta] \le \max\{A^-(x), A^-(y)\} + \beta = \max\{A^-(x)+\beta, A^-(y)+\beta\} = \max\{T^{-A}{}_{\beta}(x), T^{-A}{}_{\beta}(y)\}$ which implies that $V^-[f(x)f(y)] \le \max\{V^-(f(x)), V^-(f(y))\}$ for all f(x) and f(y) in \mathbb{R}^1 . Therefore V is a bipolar valued fuzzy subhemiring of \mathbb{R}^1 .

2.9. Theorem

Let (R, +, .) and (R', +, .) be any two hemirings and f be an anti-homomorphism. Then the anti-homomorphic pre-image of bipolar valued fuzzy translation of a bipolar valued fuzzy subhemiring V of R' is a bipolar valued fuzzy subhemiring of R.

Proof: Let $T = T_{(\alpha,\beta)}^{V} = f(A)$, where $T_{(\alpha,\beta)}^{V}$ is a bipolar valued fuzzy translation of bipolar valued fuzzy subhemiring $V = (V^+, V^-)$ of $R^!$. We have to prove that $A = (A^+, A^-)$ is a bipolar valued fuzzy subhemiring of R. Let x and y in R. Then $A^+(x+y) = T_{\alpha}^{+V}$ (f(x+y)) = T_{α}^{+V} (f(y)+f(x)) = $V^+[f(y)+f(x)] + \alpha \ge \min\{V^+(f(y)), V^+(f(x))\} + \alpha = \min\{V^+(f(x)) + \alpha, V^+(f(y)) + \alpha\} = \min\{T_{\alpha}^{+V}(f(x)), T_{\alpha}^{+V}(f(y))\} = \min\{A^+(x), A^+(y)\}$ which implies that $A^+(x+y) \ge \min\{A^+(x), A^+(y)\}$ for all x, y in R. And $A^+(xy) = T_{\alpha}^{+V}(f(xy)) = T_{\alpha}^{+V}(f(y)f(x)) = V^+[f(y)f(x)] + \alpha \ge \min\{V^+(f(y)), V^+(f(y)), V^+(f(x))\} + \alpha = \min\{V^+(f(x)) + \alpha, V^+(f(y)) + \alpha\} = \min\{T_{\alpha}^{+V}(f(x)), T_{\alpha}^{+V}(f(y))\} = \min\{A^+(x), A^+(y)\}$ which implies that $A^+(x) \ge \min\{A^+(x), A^+(y)\}$ for all x and y in R. Also $A^-(x+y) = T_{\beta}^{-V}(f(x+y)) = T_{\beta}^{-V}(f(y)+f(x)) = V^-[f(y)+f(x)] + \beta \le \max\{V^-(f(x)), V^-(f(x))\} + \beta = \max\{V^-(f(x)), +\beta, V^-(f(y))\} + \beta\} = \max\{T_{\beta}^{-V}(f(x)), T_{\beta}^{-V}(f(y))\} = T_{\beta}^{-V}(f(y)) = T_{\beta}^{-V}(f(y)) + \beta\} = \max\{T_{\beta}^{-V}(f(x)), T_{\beta}^{-V}(f(y))\}$

f(x)), $T_{\beta}^{-V}(f(y)) \} = \max \{ A^{-}(x), A^{-}(y) \}$ which implies $A^{-}(xy) \le \max \{ A^{-}(x), A^{-}(y) \}$ for all x and y in R. Therefore A is a bipolar valued fuzzy subhemiring of R.

REFERENCES

- 1. Anitha.M.S., Muruganantha Prasad & K.Arjunan, Notes on Bipolar-valued fuzzy subgroups of a group, Bulletin of Society for Mathematical Services and Standards, Vol. 2 No. 3 (2013), pp. 52-59.
- 2. Anitha.M.S, K.L.Muruganantha Prasad & K.Arjunan, Homomorphism and anti-homomorphism of Bipolar valued fuzzy subgroups of a group, International Journal of Mathematical Archive-4(12), 2013, 1-4.
- 3. Anthony.J.M and H.Sherwood, fuzzy groups Redefined, Journal of mathematical analysis and applications, 69(1979),124 -130.
- 4. Arsham Borumand Saeid, Bipolar-valued fuzzy BCK/BCI-algebras, World Applied Sciences Journal 7 (11) (2009), 1404-1411.
- 5. Azriel Rosenfeld, fuzzy groups, Journal of mathematical analysis and applications 35(1971), 512-517.
- 6. F.P.Choudhury, A.B.Chakraborty and S.S.Khare, A note on fuzzy subgroups and fuzzy homomorphism, Journal of mathematical analysis and applications, 131(1988), 537 -553.
- 7. W.L.Gau and D.J. Buehrer, Vague sets, IEEE Transactons on Systems, Man and Cybernetics, 23(1993), 610-614.
- 8. Kyoung Ja Lee, Bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI-algebras, Bull. Malays.Math. Sci. Soc. (2) 32(3) (2009), 361–373.
- 9. K.M.Lee, Bipolar-valued fuzzy sets and their operations. Proc. Int. Conf. on Intelligent Technologies, Bangkok, Thailand, (2000), 307-312.
- 10. K.M.Lee, Comparison of interval-valued fuzzy sets, intuitionistic fuzzy sets and bipolarvalued fuzzy sets. J. fuzzy Logic Intelligent Systems, 14 (2) (2004), 125-129.
- 11. Mustafa Akgul, some properties of fuzzy groups, Journal of mathematical analysis and applications, 133(1988), 93-100.
- 12. Samit Kumar Majumder, Bipolar valued fuzzy sets in Γ-semigroups, Mathematica Aeterna, Vol. 2, no. 3(2012), 203 213.
- 13. Shanmugapriya.V and Arjunan.K., Some translators in bipolar valued fuzzy subsemiring of a semiring, Bulletin of Mathematics and Statistic Research, Vol.4, Iss.4, 2016, 118-123.
- 14. Young Bae Jun and Seok Zun Song, Subalgebras and closed ideals of BCH-algebras based on bipolar-valued fuzzy sets, Scientiae Mathematicae Japonicae Online, (2008), 427-437.
- 15. L.A.Zadeh, fuzzy sets, Inform. And Control, 8(1965), 338-353.